The Manhattan Project: Making the Atomic Bomb
Part IV: The Manhattan Engineer District in Operation
Design Changes at Y-12
Lawrence and his colleagues continued to look for ways to improve the electromagnetic process. Lawrence found that hot (high positive voltage) electrical sources could replace the single cold (grounded) source in future plants, providing more efficient use of power, reducing insulator failure, and making it possible to use multiple rather than single beams.33 Meanwhile, receiver design evolved quickly enough in spring and summer 1943 to be incorporated into the Alpha plant. Work at the Radiation Laboratory picked up additional speed in March with the authorization of the Beta process. With Alpha technology far from perfected, Lawrence and his staff now had to participate in planning for an unanticipated stage of the electromagnetic process.
While the scientists in Berkeley studied changes that would be required in the down-sized Beta racetracks, engineering work at Oak Ridge prescribed specific design modifications. For a variety of reasons, including simplicity of maintenance, Tennessee Eastman decided that the Beta plant would consist of a rectangular, rather than oval, arrangement of two tracks of thirty-six tanks each. Factoring this configuration into their calculations, Lawrence and his coworkers bent their efforts to developing chemical processing techniques that would minimize the loss of enriched uranium during Beta production runs. To make certain that Alpha had enough feed material, Lawrence arranged for research on an alternate method at Brown University and expanded efforts at Berkeley. With what was left of his time and money in early 1943 Lawrence built prototypes of Alpha and Beta units for testing and training operating personnel. Meanwhile Tennessee Eastman, running behind schedule, raced to complete experimental models so that training and test runs could be performed at Oak Ridge.